avecet

AVIATION SERVICES, LLC - 2551 HELLCAT LANE, SANFORD, FLORIDA 32773
FAA CRS\# 6VAR708B E.A.S.A. \# 145.6440
MPA RUN DATA B737 TEST NO. 10

CUSTOMER:
ENGINE SERIAL NO: 727144 ENGINE SERIAL NO WORK ORDER NO: 2213 DATE: 16 SEPT. 2020 POWER SETTING: 23.5k

ACFT REG. NO:
POSITION NO: 1
POSITION NO: 2
REASON: Test 10

Test No. 5 Power Assurance Check (90% N1)

Test No. 5 Takeoff Power Check

Recorded Values						
N1\%	N2\%	EGT	FUEL FLOW	RED LINE	MARGIN	VIB
98.6	100.3	822	3.2	930	108	0.8
				930		

Test 5 Power Assurance Check (80% N1)

- NOTE 22.000 THRUST LBS CHECK @ SE S LEVEL EGT MARGIN REDUCED 43 DEG C FOR 80% SETTING. FOR 85% - 90% SETTINGS REDUCE 42 DEG.C
- NOTE NOALTITUDE ADJUSTMENT FOR 2,000 OPERATIONS AND HIGHER.

REV. 5 06-01-2018
FORM M022

ENGINE PERFORMANCE RUN.
B737 AMM 71-00-00 TEST 6

PMC OFF		PMC ON	
Target N2	Recorded	Target N1	Recorded
94.1	94.6	75.7	77.1

TEST 7 - Vibration Survey			
Accelerate			
N1\%	N1\%	Vib Readings (UNITS)	
Range	Speed	POS 1	POS 2
$52.2-56.0$	53.0	0.9	
$63.8-67.6$	65.0	0.9	
$71.5-75.4$	73.0	1.0	
$79.2-82.1$	80.0	1.0	
$84.1-87.0$	85.0	1.0	
$90.0-93.7$	91.0	0.9	
TEST 7 - Vibration Survey			
Deceterate			
D.			

N1\%	N1\%	Vib Readings (UNITS)			
Range	Speed	POS 1	POS 2		
$90.0-93.7$	91.0	0.9			
$84.1-87.0$	85.0	0.9			
$79.2-82.1$	80.0	1.0			
$71.5-75.4$	73.0	1.0			
$63.8-67.6$	65.0	0.9			
$52.2-56.0$	53.0	1.0			
TEST 8					
Accel	Static T/O	40% N1 to Target	High Idle to Target		
96.3	98.6	4	6.0		

$\begin{gathered} \text { N2 ADJ } \\ \text { FOR } 23.5 \mathrm{KK} \\ 13 \mathrm{C}-1 \end{gathered}$	$\begin{aligned} & \text { ADJUSTED } \\ & \text { N2 } \end{aligned}$	Max N 2	\% N2 MARGIN
0.0\%	94.6\%	94.8\%	0.2\%
$\begin{gathered} \text { N2 ADJ } \\ \text { FOR } 23.5 \mathrm{~K} \\ \text { I } 3 \mathrm{C}-1 \end{gathered}$	$\begin{gathered} \text { ADJUSTED } \\ \text { N2 } \end{gathered}$	MAX N 2	HoNE MAREIN
0.0\%	96.5\%	97.7\%	1.2\%
$\begin{gathered} \mathrm{N} 2 \mathrm{ADJ} \\ \text { FOR } 23.5 \mathrm{~K} \\ 13 \mathrm{C}-1 \end{gathered}$	$\begin{gathered} \text { ADJUSTĚD } \\ \text { N2 } \end{gathered}$	MAX N2.	2 $\mathrm{N}, \mathrm{N} 2$ MARGIN
0.0\%	98.0\%	99.5\%	1.5\%
QC Insp:		$14-2$	$\Delta 20$

REPRINT
Maintenance Work Order
0003392103

December 4, 2018 11:35:01 AM

Task / Discrepancy: ESN 727144 - PRESERVE ENGINE UP TO 365 DAYS

Suggested Action: As Stated

737-300/400/500
 AIRCRAFT MAINTENANCE MANUAL

Zone	Area
606	Engine

E. Power Plant Depreservation

SUBTASK 71-00-03-032-133-C00
(1) Remove the waterproof cover, the film, G02455 [CP2160], and desiccant, G02456 [CP2098].

SUBtask 71-00-03.032-137-c00
(2) Make sure you remove all of the tape from the inlet and exhaust areas and there is no unwanted material.

SUBTASK 71-00-03-612-134-c00
(3) Do a check of the oil tank level and fill it up if necessary (TASK 12-13-11-603-056 or TASK 12-13-11-603-054).
(a) Use 20 quarts (19 liters) of approved engine oil, D00599 [CP2442].

SUBTASK 71-00-03-682-135-C00
WARNING: USE THE POWER PLANT OPERATION (NORMAL) PROCEDURE TO OPERATE THE POWER PLANT. IF YOU DO NOT USE THIS PROCEDURE, YOU CAN CAUSE DAMAGE TO EQUIPMENT OR INJURY TO PERSONS.
(4) Use the Power Plant Wet-Motor procedure to motor the engine (TASK 71-00-00-802-117-C00). SUBTASK 71-00-03.-862-138.C00
(5) Use the Power Plant Wet-Motor procedure to do the engine shut-down (TASK 71-00-00-802-117-C00).
SUBTASK 71-00-03-712-136-c00
(6) Do this task: Test No. 3 - Idle Leak Check, TASK 71-00-00-795-004-C00.
(a) Operate the engine at low idle for ten minutes minimum before the engine shutdown.

TASK 71-00-03-622-046-C00
9. Power Plant (30 to 365 Days - Serviceable and Not serviceable Power Plant) Preservation (Figure 201)

A. General

(1) This task provides the instructions on how to preserve the engine from beteen 30-165 days.
(2) The tasks are for engines that are installed on-wing.
(3) Procedures for engines that are removed from the airplane are in the CFMI Engine Shop Manual, Section 72-00-00, Page 1201.
(4) This task requires a waterproof protective cover and tape that must be acquired locally.
(5) Do not apply a spray of preservation oil to the inlet, compressor, turbine, or exhaust.
(6) For power plant that is not serviceable, if you can do the engine motoring procedure, use the procedure for a serviceable engine preservation for 30 to 365 days.
B. References

Reference	Title
$12-13-11-603-054$	Replenish the Engine Oil (P/B 301)
12-13-11-603-056	Replenish the Engine Oil (P/B 301)

EFFECTIVITY

737-300/400/500
 AIRCRAFT MAINTENANCE MANUAL

(Continued)

Reference	Title
$12-13-11-603-069$	Change the Engine Oil (P/B 301)
$24-22-00-862-001$	Supply External Power to the Buses (P/B 201)
$24-22-00-862-011$	Remove External Power from the Buses (P/B 201)
$71-00-00-802-074-C 00$	Power Plant (Normal) Operation (P/B 201)
$72-00-00-982-026-C 00$	N2 Rotor Manual or Drive Motor (P/B 201)
$73-11-02-004-001-C 00$	Fuel Filter Cartridge Removal (P/B 401)
$73-11-02-404-013-C 00$	Fuel Filter Cartridge Installation (P/B 401)
$75-32-00-862-001-C 00$	VBV System Actuation Procedure - External Pressure Source
	(P/B 201)
$75-32-00-982-014-C 00$	VBV System Actuation Procedure - Manual Movement
	(P/B 201)
$79-21-04-004-001-C 00$	Scavenge Oil Filter Element Removal (P/B 401)
$79-21-04-404-006-C 00$	Scavenge Oil Filter Element Installation (P/B 401)
$79-21-05-002-001-C 00$	Magnetic Chip Detector (MCD) Removal (P/B 201)
$79-21-05-402-015-C 00$	Magnetic Chip Detector (MCD) Installation (P/B 201)

C. Tools/Equipment

NOTE: When more than one tool part number is listed under the same "Reference" number, the tools shown are alternates to each other within the same airplane series. Tool part numbers that are replaced or non-procurable are preceded by "Opt:", which stands for Optional.
Reference

Description

SPL-9853
Cart - Nitrogen Manifold - Fuel Pressure Test - CFM56-3 Engine Part \#: 856A1115G07 Supplier: 58828
STD-162 Cart - Oil, Pressurized 50 PSI (345 kPa) max, 10 Gallon (38 Liters) cap
STD-1285 Container - Fuel Resistant, 10 Gallon (38 Liters)
STD-1290 Source - Nitrogen, 0-200 PSIG
STD-3940 Air Source - Regulated. Dry Filtered, 0 to 150 psig
STD-6378 Protective Mat - Rubber, Manufacturers Association, Grade SC43, neoprene sponge, 1 inch thick, approximately 3×4 feet with warning streamer attached
STD-8414 Gloves - Heat and/or Abrasion Resistant
D. Consumable Materials

Reference	Description	Specification
D00599 [CP2442]	Oil - Engine (CFMI SB 79-0001)	CFM CP2442
D00623 [CP5066]	Oil - Fuel System, Corrosion Preventive	MIL-PRF-6081, Grade
		1010
D00662 [CP5075]	Additive, Corrosion Preventive	
D00664 [CP5067]	Oil - Corrosion Preventive, Lubricative System	MIL-PRF-6085
G02455 [CP2160]	Film, Vapor Barrier, Polyethylene	L-P-512
G02456 [CP2098]	Desiccant - Activated, Bagged, Packaging Use And Static Dehumidification	

EFFECTIVITY
VII ALL

AIRCRAFT MAINTENANCE MANUAL

E. Location Zones

Zone	Area
506	Engine
606	Engine

F. Power Plant (Serviceable) Preservation

SUBTASK 71-00-03.612-131-c00
CAUTION: DO NOT APPLY A SPRAY OF PRESERVATIVE OIL OR AN EQUIVALENT OIL INTO THE ENGINE INLET, CORE COMPRESSOR OR TURBINE, OR ENGINE EXHAUST. DIRT PARTICLES THAT ATTACH TO THE WET BLADES AND VANES CAN DECREASE ENGINE PERFORMANCE DURING THE SUBSEQUENT ENGINE OPERATION.
(1) Fill the engine oil tank with a minimum of 20 quarts (19 liters) of one of the mixtures that follow (TASK 12-13-11-603-056 or TASK 12-13-11-603-054):
(a) Engine oil, D00599 [CP2442] and a minimum of 5 percent by volume lubrication system corrosion preventive oil, D00664 [CP5067].
(b) Engine oil, D00599 [CP2442] and a minimum of 7 percent by volume corrosion preventive oil additive, D00662 [CP5075].
subtask 71-00.03-432-046.coo
(2) Install pad covers (N2 Rotor Manual or Drive Motor, TASK 72-00-00-982-026-C00) and gaskets on all accessory drive pads if you remove an accessory unit.

SUBTASK 71-00-03-622-049-C00
(3) Do the engine fuel system preservation.
(a) Drain the fuel supply line.
(b) Supply the electrical power (TASK 24-22-00-862-001).

1) Remove the DO-NOT-OPERATE tag from the BAT switch.
(c) Make sure the applicable start lever is in the CUTOFF position.
(d) Make sure the FUEL VALVE CLOSED light on pilots' overhead panel, (P5), is on (dim) to show the valve closed.
(e) Open this circuit breaker and attach a DO-NOT-CLOSE tag:
2) P6 Main Power Distribution Panel
a) SHUTOFF VALVE ENG
(f) Remove the electrical power (TASK 24-22-00-862-011).
3) Set the BAT switch on the Electrical Meters Battery and Galley Power Module (P5-13) to the OFF position and install a DO-NOT-OPERATE tag.
(g) Put an approved container for fuel below the drain plug for the fuel filter.
(h) Remove the drain plug for the fuel filter and let the fuel drain.

NOTE: You can loosen the connection for the fuel supply line at the service disconnect panel to help the fuel drain.
You can use a funnel, made from foil or equivalent material, below the fuel supply line connection and a hose that goes to the container to prevent fuel leakage on the fan case.
(i) Remove the 0 -ring from the drain plug.

1) Discard the O-ring.

737-300/400/500

AIRCRAFT MAINTENANCE MANUAL

(j) Install a new O-ring, lightly lubricated with petrolatum, on the drain plug.
(k) Install the drain plug with the threads lightly lubricated with grease.

1) Tighten the drain plug to $45-55$ pound-inches (5.1-6.2 Newton-meters).
2) Safety the drain plug with a lockwire. TiW \# $024203 \mathrm{C}^{2} A 4$ D $1-11-20 \mathrm{Dc}-44$
(I) If you loosened the fuel supply line, tighten the connection for the fuel supply line at the service disconnect panel.
(m) Disconnect the fuel supply line at the fuel pump inlet.
3) Remove the bolts and washers that attach the fuel supply line to the fuel pump.
4) Remove the gasket from the inlet flange of the fuel pump.
a) Keep the gasket for the installation.
5) Install the cap on the fuel supply line.

CAUTION: DO NOT USE SILICONE BASE OILS IN THE FUEL SYSTEM. SILICONE BASE OILS CAN CAUSE DAMAGE TO THE FUEL SYSTEM.
(n) Connect a temporary line from the oil cart, STD-162 to the fuel pump inlet to supply fuel system corrosion preventive oil, D00623 [CP5066] at $50 \mathrm{psi}(345 \mathrm{kPa})$ maximum pressure.
(0) Disconnect the PCR line from the port on the top of the main engine control (MEC).
(p) Connect a temporary drain line from the PCR port and from the disconnected line to a 10 gallon (38 liters) fuel resistant container, STD-1285.
(q) Disconnect the discharge pressure (CDP) line of the compressor from the port on the aft end of the MEC.
(r) Connect a fuel pressure test cart, SPL-9853 or 0 to 150 psig dry filtered regulated air source, STD-3940 or nitrogen source, STD-1290 to the CDP port.
NOTE: The air or nitrogen source must be capable of controlled pressure from zero to 150 psi.
NOTE: Do not apply pressure to the CDP port at this time.
(s) Install a cap on the CDP line.
(t) Apply and hold an oil pressure of $50 \mathrm{psi}(345 \mathrm{kPa})$ maximum to the fuel pump inlet.

WARNING:
USE THE POWER PLANT OPERATIONAL PROCEDURE TO OPERATE THE POWER PLANT. IF YOU DO NOT USE THIS PROCEDURE, YOU CAN CAUSE DAMAGE TO THE EQUIPMENT OR INJURY TO PERSONS.
DO NOT APPLY BOOST PUMP PRESSURE TO THE FUEL PUMP INLET DURING THE DRY MOTOR PROCEDURE. FUEL LEAKAGE CAN OCCUR AND CAUSE DAMAGE TO THE EQUIPMENT OR INJURY TO PERSONS.
(u) Use the Power Plant Dry-Motor procedure to motor the engine at the maximum motor speed (20 percent of N2 minimum) for two minutes (TASK 71-00-00-802-074-C00).

1) Do not apply boost pump pressure to the fuel pump inlet.

NOTE: Because the engine fuel supply line was disconnected and capped, fuel boost pump pressure can cause the cap on the supply line to come off and fuel to spill on the engine.
(v) Use the Power Plant Dry-Motor procedure to do the engine shutdown
(TASK 71-00-00-802-074-C00).

737-300/400/500
 AIRCRAFT MAINTENANCE MANUAL

(w) Remove the pressure from the oil supply line to the fuel pump inlet.
(x) If the fan rotor did not turn during the engine motor procedure, make sure the engine is fully stopped and manually turn the fan rotor two full turns as follows:

1) Install two protective mats, STD-6378 in the inlet on the full lower half of inlet cowl.

WARNING: YOU MUST HAVE COMMUNICATION BETWEEN THE PERSONS IN FLIGHT COMPARTMENT AND PERSONS THAT MANUALLY TURN THE FAN ROTOR AT ALL TIMES. ACCIDENTAL OPERATION OF THE ENGINE OR ENGINE SYSTEMS CAN CAUSE INJURY TO PERSONS NEAR THE ENGINE.

THE ENGINE MUST BE FULLY STOPPED BEFORE YOU TRY TO GO INTO THE INLET TO MANUALLY TURN THE FAN ROTOR. IF THE ENGINE IS NOT FULLY STOPPED, INJURY CAN OCCUR.

WARNING: DO NOT TRY TO MANUALLY TURN THE FAN ROTOR WITHOUT GOOD GLOVES.

MAKE SURE YOU ARE ON A SAFE SURFACE WHILE YOU TURN THE FAN.

BE VERY CAREFUL WHILE YOU TURN THE FAN TO PREVENT INJURY.
2) Use heat and/or abrasion resistant gloves, STD-8414 and manually turn the fan two full turns in the direction of operation (counterclockwise viewed from front).
3) Remove the protective mats, STD-6378from the inlet cowl.
(y) Remove the drain line from the PCR port and disconnected PCR line.
(z) Connect the PCR line to the PCR port.

1) Tighten the coupling nut to 65-75 pound-inches (7.3-8.5 Newton-meters).
(aa) Apply and hold an oil pressure of $50 \mathrm{psi}(345 \mathrm{kPa})$ maximum to the fuel pump inlet.
(ab) Apply and hold a pressure of $150 \mathrm{psi}(1035 \mathrm{kPa})$ at the CDP port.
WARNING: USE THE POWER PLANT OPERATIONAL PROCEDURE TO OPERATE THE POWER PLANT. IF YOU DO NOT USE THIS PROCEDURE, YOU CAN CAUSE DAMAGE TO THE EQUIPMENT OR INJURY TO PERSONS.

DO NOT APPLY BOOST PUMP PRESSURE TO THE FUEL PUMP INLET DURING THE DRY MOTOR PROCEDURE. FUEL LEAKAGE CAN OCCUR AND CAUSE DAMAGE TO THE EQUIPMENT OR INJURY TO PERSONS.
(ac) Use the Power Plant Dry-Motor procedure to motor the engine to the maximum motor speed (approximately 24-28 percent of N2) (TASK 71-00-00-802-074-C00) .

1) Do not apply boost pump pressure to the fuel pump inlet.

NOTE: Because the engine fuel supply line was disconnected and capped, fuel boost pump pressure can cause the cap on the supply line to come off and fuel to spill on the engine.
(ad) When the engine is at maximum motor speed, put the applicable engine start lever in the IDLE position for 10 seconds.
(ae) Put the start lever back to the CUTOFF position and continue to motor the engine for 2 minutes.
(af) Use the Power Plant Dry-Motor procedure to do the engine shutdown

737-300/400/500

AIRCRAFT MAINTENANCE MANUAL

(ag) Remove the pressure from the oil supply line to the fuel pump inlet.
(ah) Remove the oil supply line.
(ai) Connect the fuel supply line to the fuel pump inlet.

1) Remove the cap from the fuel supply line.
2) Lightly lubricate the gasket with petrolatum and install it on the inlet port of the fuel pump.
3) Lightly lubricate the bolts (4 locations) for the fuel line flange with grease.
4) Put the fuel line flange on the fuel pump flange, and install the bolts and washers (4 locations).
a) Tighten the bolts.
(aj) Remove the pressure from the CDP port (incorrect PS3 source).
(ak) Remove the cap from the CDP line.
(al) Connect the CDP line to the MEC port.
5) Tighten the coupling nut to $135-150$ pound-inches (15.3-17.0 Newton -meters).

SUBTASK 71-00-03-412-124-C00
(4) Close the VBV doors if they are open (TASK 75-32-00-862-001-C00 or TASK 75-32-00-982-014-C00).

SUBTASK 71-00-03-432-125-C00
(5) Put the vapor barrier film, G02455 [CP2160] on the VBV bleed grills.

SUBTASK 71-00-03-432-126-C00
(6) Install caps on all disconnected lines and electrical connections.

SUBTASK 71-00-03-432-127-C00
(7) Seal the inlet and exhaust openings with the vapor barrier film, G02455 [CP2160].
(a) Attach the vapor barrier film, G02455 [CP2160] with tape.

SUBTASK 71-00-03-432-050-C00
(8) Put the desiccant, G02456 [CP2098] on each side of the engine, but do not let it touch the engine hardware.
NOTE: You must replace the desiccant at regular intervals depending on the weather conditions. Install the desiccant such that it gives sufficient protection to the engine and also lets access for replacement without damage to the engine protective cover.

SUBTASK 71-00-03-432-051-C00
(9) Install a waterproof cover on the full power plant.
(a) Tightly attach the waterproof cover to the engine.

SUETASK 71-00-03-932-052-C00
(10) Attach a tag to the power plant to show that you did the fuel system and oil system preservation with preservation oil.
(a) Include the date of the preservation procedure.

SUBTASK 71-00-03-862-053-C00
(11) Remove the DO-NOT-CLOSE tag and close this circuit breaker:

(a) P6 Main Power Distribution Panel

1) SHUTOFF VALVE ENG

ENGINE LIFE LIMITED PARTS STATUS

Engine Installation / Removal History									
Engine P/N:	CFM56-3C1								\square
Engine S/N:	727-144								
As date of:	19-11-2015								
Description	Date	TSN	TSI	CSN	CSI	AIRCRAFT	POSITION	A/C TAIL	NOTE(S)
As received	16-07-2016	48990	48990	32795	32795	737-300			
Install	16-07-2016	48990	48990	32795	32795	737-300	1	CC-ADZ	Instalación en Perú
Remove	09-03-2017	50678	1688	33259	464	737-300	1	CC-ADZ	Avión deja de operar
Install	13-08-2017	50678	1688	33259	464	737-300	1	CC-ASQ	Reemplaza a ESN 858 -987 por ciclos rem. en CC-ASQ
Remove	02-12-2017	51794	2804	33734	939	737-300	1	CC-ASQ	Removido por alta EGT
Install	03-12-2017	51794	2804	33734	939	737-300	0	N/A	Motor preservado
Remove		51794	0	33734	0	737-300	0	N/A	Motor preservado

FAA REPAIR STATION NO. 7AHR548B
EASA REPAIR STATION NO. 145.5903

VIDEO BORESCOPE REPORT FOR CFM56 SERIES ENGINE

CLIENT:

Engine S/N:		727144
Engine TSN:		$51,806.20$
A/C Reg:		N228AW
ACFT TAT:		$58,497.30$

WORK ORDER \# HT120-10011
INSPECTION: Accomplish full gas path boroscope to include 360 degree inspection of combustion chamber, HPT 1 NGV, LPT 1 NGV.
Engine CSN:
A/C Model:
ACFT TAC:

\#1 | Eng Model: |
| :---: |
| 33,737 |
| B737-33A |

CFM56-3C1

A/C S/N: 25032 35,722 Manual REV. 82 / Sep 25/2015

Exterior Inspection

No apparent damage or leakage observed to the cases or installed QEC's

Compressor Case

No observed cracking, distortion or evidentence of overtemp noted at this time.

Accessory Drive Gearbox

No apparent damage or leakage to the gearbox or installed accessories noted at this time

Exhaust Cases

No damage or defects noted to the turbine cooling tubes, no broken lugs and no leaks noted at this time.

Exhaust Cone

No damage or defects noted at this time.

LOW PRESSURE COMPRESSOR

Low Pressure Stage:

Comments

LPC FAN N1 No significant discrepancies at this time.

Reference

AMM 72-31-02 / TASK
72-31-02-226-001-C00

Serviceable

Yes

Comments

LPC Stage 2 No significant discrepancies at this time.

Reference

AMM 72-00-00 / TASK
72-00-00-216-008-C00

Serviceable

Yes

Comments

LPC Stage 3 No significant discrepancies at this time.

Reference

AMM 72-00-00 / TASK
72-00-00-216-008-C00
Serviceable
Yes

Comments
LPC Stage 4 No significant discrepancies at this time.

Reference
AMM 72-00-00 / TASK
72-00-00-216-008-C00
Serviceable
Yes

AVIATION SERVICES
Work Ordar
HT120-10011
Engine S / N :
727144
Engine Mode
CFM56-3C1

HIGH PRESSURE COMPRESSOR

High Pressure Compressor Blades:

Comments

HPC Stage 1 No significant discrepancies at this time.

Reference

AMM 72-00-00 / TASK
72-00-00-216-049-C00

Serviceable

Yes

Comments

HPC Stage 2 No significant discrepancies at this time.

Reference

AMM 72-00-00 / TASK
72-00-00-216-049-C00

Serviceable

Yes

Comments

HPC Stage 3 No significant discrepancies at this time.

Reference

AMM 72-00-00 / TASK
72-00-00-216-049-C00

Serviceable

Yes

Comments

HPC Stage 4 No significant discrepancies at this time.

Reference

AMM 72-00-00 / TASK
72-00-00-216-049-C00

Serviceable

HIGH PRESSURE COMPRESSOR

High Pressure Compressor Blades:

Comments

HPC Stage 5 No significant discrepancies at this time.

Reference

AMM 72-00-00 / TASK
72-00-00-216-049-C00

Serviceable

Yes

Comments

HPC Stage 6 No significant discrepancies at this time.

Reference
AMM 72-00-00 / TASK
72-00-00-216-049-C00

Serviceable

Yes

Comments

HPC Stage 7 No significant discrepancies at this time.

Reference

AMM 72-00-00 / TASK
72-00-00-216-049-C00

Serviceable

Yes

Comments

HPC Stage 8 No significant discrepancies at this time.

Reference

AMM 72-00-00 / TASK
72-00-00-216-049-C00

Serviceable

Yes

HIGH PRESSURE COMPRESSOR

High Pressure Compressor Blades:

Comments

HPC Stage 9 No significant discrepancies at this time.

Reference

AMM 72-00-00 / TASK
72-00-00-216-049-C00

Serviceable

Yes

Combustion Chamber

Comments

Liners \& Fuel Nozzles No significant discrepancies at this time.

Reference

AMM 72-00-00 / TASK
72-00-00-216-023-C00

Serviceable

Yes

Comments

HPT 1 NGV

Reference
AMM 72-00-00 / TASK 72-00-00-211-001-C00

Serviceable

Yes

HIGH PRESSURE TURBINE

Comments

HPT 1 Blades No significant discrepancies at this time.

Reference

AMM 72-00-00 / TASK
72-00-00-290-801-C00

Serviceable

Yes

LOW PRESSURE TURBINE

Low Pressure Blades:

Comments

LPT 1 Blades No significant discrepancies at this time.

Reference

AMM 72-00-00 / TASK
72-00-00-216-045-C00

Serviceable

Yes

Comments

LPT 1 NGV

Reference
AIVIIVI / $\angle-\mathrm{UU}-\mathrm{UU}$ / chord length, 0.66 inch. Within AMM Limits.

SUBTASK 72-00-00-211-
กก६-rกn
Serviceable
Yes
Axial crack found on 2 ea vane L/E. G.(1)(b)1) Axial cracks are permitted if they are less than $1 / 3$ of the

Comments

LPT 2 Blades No significant discrepancies at this time.

Reference

AMM 72-00-00 / TASK
72-00-00-216-045-C00

Serviceable

Yes

Comments

LPT 3 BLADES No significant discrepancies at this time.

Reference

AMM 72-00-00 / TASK
72-00-00-216-045-C00

Serviceable

FAA REPAIR STATION NO. 7AHR548B

LOW PRESSURE TURBINE

Low Pressure Blades:

Comments

LPT 4 BLADES No significant discrepancies at this time.

Reference

AMM 72-00-00 / TASK
72-00-00-726-050-C00

Serviceable

Yes

Comments
DISCOURAGER SEAL No significant discrepancies at this time.

Reference
AMM 72-00-00 / TASK
72-00-00-211-001-C00
Serviceable
Yes

Comments
HPT 1 NGV
Mulitple vanes with trailing edge with missing material and burned through. Trailing edgeof the airfoil. (C.)3)a)
Reference Missing material is permitted if the max area for each AMM 72-00-00 / TASK airfoil is 1.0 sq. inch, and the max area for the engine is 72-00-00-211-001-C00 4.0 sq. inch. Within AMM limits.

Serviceable

Yes

THIS REPORT \& THE ACCOMPANYING VIDEO IS SUBMITTED SUBJECT TO THE CONDITION THAT IS UNDERSTOOD \& AGREED THAT THE CONTENTS ARE BASED ON DILIGENT INSPECTION \& ARE EXCLUSIVE OF LATENT DEFECTS IN MATERIALS, RIGGING OR SYSTEMS NOT DETECTABLE WITHOUT REMOVAL OR DISASSEMBLY, BUT ARE BELIEVED TO BE CORRECT \& ARE FAIRLY REPRESENTATIVE OF THE CONDITION OF THE ENGINE. THIS SURVEY IS SUBMITTED WITHOUT PREJUDICE \& IN CONFIDENCE TO THE NAMED CLIENT \& IS WITHOUT RESPONSIBILITY TO OTHERS TO WHOM IT MAY BE cunianı

737-300/400/500 AIRCRAFT MAINTENANCE MANUAL

1) Nicks, marks, scratches and dents on the concave and convex surfaces are permitted
(4) Examine the inner and outer platforms of the 1st-stage LPT NGV's for these conditions:
(a) Cracks:
2) Two cracks per segment are permitted with this condition:
a) Cracks are less than 0.5 inch (12.7 mm) in length
3) A maximum service extension of 3 cycles is permitted if the cracks are less than 1.0 inch (25.4 mm) length.
G. Alternate procedure. Full set LPT 1st-Stage NGV's Inspection with the Flexible Borescope sUBTASK 72-00-00-211-006-C00
(1) Examine the leading edge of the 1st-stage LPT NGV's for these conditions:
(a) V-notch
4) V-notch on the leading edge are permitted if they are less than 0.08 inch (2 mm)
5) If V -notch is more than 0.08 inch (2 mm), refer to perforations limits.
(b) Axial cracks (with or without V-notch)
6) Axial cracks are permitted if they are less than $1 / 3$ of the chord length, 0.66 inch (16.7 mm)
7) One crack per nozzle segment is permitted with these conditions:
a) Cracks are more than $1 / 3$ of the chord length, 0.66 inch (16.7 mm) but less than $4 / 5$ of the chord length, 1.57 inch (40.0 mm) in length
b) Cracks are less than 0.004 inch $(0.1 \mathrm{~mm})$ in width in the segment AB. Refer to Figure 613.
NOTE: Segment AB corresponds to the main cooling cavity and is determined as follows: from 0.32 inch $(8 \mathrm{~mm})$ to 1.22 inch $(31 \mathrm{~mm})$ from the leading edge.
8) A maximum service extension of 100 cycles is permitted if there is one crack which is more than $4 / 5$ of the chord length, 1.57 inch $(40.0 \mathrm{~mm})$ in length or more than 0.004 inch (0.1 mm) in width.
(c) Radial cracks in the leading edge confined to the forward cooling cavity (Dim A)
9) Five radial cracks per set of nozzles (28 parts) are permitted with these conditions:
a) Crack is less than 1.0 inch (25.4 mm) in length
10) A maximum service extension of 100 cycles is permitted with these conditions:
a) If there are six cracks which are less than 1.0 inch (25.4 mm) in length.
11) A maximum service extension of 100 cycles is permitted with these conditions:
a) If there is one crack which is more than 1.0 inch $(25.4 \mathrm{~mm})$) in length.
(d) Burn-through/perforations
12) Burn-through/perforations are permitted with these conditions:
a) Burn-through/perforations are located in the first cooling cavity
b) Burn-through/perforations are not more than 0.4×0.275 inches ($10 \times 7 \mathrm{~mm}$)
c) There is no more than 5 perforations per set of nozzles (28 parts)
13) Burn-through/perforations located in the second cavity are not permitted.

737-300/400/500 AIRCRAFT MAINTENANCE MANUAL

b) A maximum service extension of 25 cycles is permitted if the missing material is not more than 1.2 inches $(30.0 \mathrm{~mm})$ radially.
NOTE: The dimension 1.2 inches (30.0 mm) is the equivalent to $3 / 4$ of the airfoil height.
<1> Make sure the missing material does not extend aft of the cooling hole row No. 4 and 14.
3) Material with burns is permitted.
(b) Concave and convex surfaces of the NGV airfoil of the HPT

1) Cracks are permitted.
2) Missing material or burned through
a) It is permitted to have one area for each airfoil if the diameter is not more than 0.25 inch (6.4 mm).
b) A maximum service extension of 25 cycles is permitted if the diameter is not more than 0.50 inch (12.7 mm).
3) Material with burns is permitted.
(c) The trailing edge of the airfoil on the NGV's.
4) Axial cracks are permitted.
5) Areas with buckled or bowled material are permitted.
6) Missing material or burned through
a) Missing material is permitted if the maximum area for each airfoil is 1.0 sq. inch ($6.5 \mathrm{sq} . \mathrm{cm}$), and the maximum area for the engine is 4.0 sq . inch (25.8) sq. cm)
b) If the missing material or burn through exceeds the above limits, a maximum service extension of 25 cycles is permitted.
(d) All airfoil surfaces on the NGV's
7) Areas with craze cracks are permitted.

NOTE: Craze cracks have many surface cracks with no width or depth that you can see.
2) Areas with nicks, marks, scratches and dents are permitted.
3) Areas with metal splatter are permitted.
4) Areas where the layer of Codep is missing are permitted.
(e) Inner and outer platforms of the NGV's, but not inner platform Area A:

1) Cracks are permitted.
2) Cracks in the braze joints of the airfoil-to-platform surfaces are permitted.
3) Material with burns is permitted.
4) Missing material or burned through
a) Missing material is permitted if the diameter is not more than 0.20 inch (5.08 mm) for each segment, and 1.0 inch (25.4 mm) for the engine.
b) For damage that exceeds the above limit, a maximum service extension of 25 cycles is permitted if the area is not more than 0.5 inch $(12.7 \mathrm{~mm})$ in diameter for each segment.
5) Nicks, marks, scratches and dents on the surface of the platform
